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We prove scaling to nondegenerate Brownian motion for the path of a test par- 
ticle in the stochastic Lorentz lattice gas on yd under a weak ergodicity assump- 
tion on the scatterer distribution. We prove that recurrence holds almost surely 
in d~< 2. Transience in d~> 3 remains open. 
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1. I N T R O D U C T I O N  

The motion of a test particle in the discrete-time stochastic Lorentz lattice 
gas can be described as follows. Consider the d-dimensional lattice Z a, 
d~> 1. Scatterers are placed randomly on the sites according to some 
probability measure # that is stationary and ergodic under translations. 
A test particle starts at the origin with unit velocity in one of the 2d coor- 
dinate directions and moves in a straight line, one step per unit of time, 
until it hits a first scatterer. There the velocity randomly changes direction 
and the particle continues to move in a straight line until it hits a second 
scatterer, and so on. 

In the continuous-time version of this model the particle jumps on the 
event times of a mean-one Poisson process, which is independent of the 
position of the particle and of the scatterer configuration. 

In this paper we prove that the path of the particle scales to non- 
degenerate Brownian motion both for the discrete- and for the continuous- 
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time version. 4 The main difficulty is that the environment process (i.e., the 
process of scatterer configurations as seen from the position of the particle) 
is non-Markov. The joint process of environment and velocity is Markov, 
but fails to be reversible. However, if the particle starts on a scatterer (with 
random initial velocity) and if it is observed only when hitting a scatterer, 
then the imbedded environment process is Markov and reversible w.r.t. Po, 
the probability measure obtained from # by conditioning on the origin to 
be a scatterer (i.e., the particle starts on a scatterer with random initial 
velocity). In other words, the environment process is Markov and reversible 
along the random time scale of  scatterer hitting times (the Markov property 
relies on the assumption of uniform scattering, i.e., scattering with equal 
probability in each direction). In order to ensure that the latter process is 
ergodic, we need a certain notion of connectedness. This means that the test 
particle can reach any scatterer from any other (i.e., the imbedded jump 
process is irreducible). We are then in a situation where we can apply a 
theorem by DeMasi et aL (1) to obtain scaling to Brownian motion 
(invariance principle) along the random time scale of scatterer hitting 
times. 

At that stage three problems remain to be solved. First, to get back to 
the full time scale, we use a random-time-change argument. Second, to deal 
with the starting measure # (i.e., the situation where the origin is not condi- 
tioned to be a scatterer and the initial velocity of the particle is arbitrary), 
we prove that when the particle hits the first scatterer the environment it 
sees is distributed according to a measure that is absolutely continuous 
w.r.t. #o. The latter implies that the scaling carries over with the same 
diffusion matrix. Third, to prove nondegeneracy of the limiting Brownian 
motion, we exhibit lower and upper bounds for the diffusion matrix. 

Finally, we prove recurrence in dimension d =  2. This property cannot 
be derived from the invariance principle, because the indicator of returning 
infinitely often to the origin is not a continuous function on path space. 
Recurrence is obtained from a comparison inequality which shows that the 
path of the test particle in the random medium is in a certain sense "more 
recurrent" than in the average (effective) medium. The proof of the 
inequality is based on the Dirichlet principle. Transience in d ~> 3 remains 
open. 

The paper is organized as follows. In Section 2 we introduce a general 
model where the test particle jumps between scatterers at a rate depending 
on the interscatterer distance. We prove an invariance principle for the 
rescaled position of the test particle. In Section 3 we show how to apply the 

4A referee has pointed out to us that the same result is announced without proof in 
Varadhan. (91 A proof has never been published (S. R. S. Varadhan, private communication). 



Stochastic Lorentz Lattice Gas 1 585 

latter result in order to prove the invariance principle for the Stochastic 
Lorentz lattice gas on the scatterer hitting time scale and for/~o. We then 
show how to obtain the invariance principle on the full time scale and for 
the nonconditioned measure kt. In Section 4 we prove that the diffusion 
matrix is nondegenerate. We shall see (as was already noticed by other 
authors) that the diffusion constant differs considerably from the Boltzmann 
value. In d = 1 the diffusion constant equals the mean interscatterer distance. 
In d~> 2 we exhibit classical bounds: a lower bound (the one-dimensional 
diffusion constant) and an upper bound (the Boltzmann value). In Section 5 
we deal with the problem of recurrence. 

2. A C O N T I N U O U S - T I M E  R A N D O M  W A L K  ON S C A T T E R E R S  

We introduce a continuous-time random walk on scatterers with the 
following properties: 

(i) Jumps are parallel to the coordinate directions and occur only 
between neighboring scatterers (i.e., the walk cannot jump over a 
scatterer). 

(ii) The jump rates depend symmetrically on the jump vector. 

The main point of this section is to establish a sufficient condition for 
ergodicity of the environment process. This is needed for the invariance 
principle. 

2.1. N o t a t i o n s  

The scatterer configuration is denoted by a mapping t/: Z d--, {0, I} 
with r/(x) = 1 if x is a scatterer and r/(x) = 0 if not. f2 denotes the set of all 
scatterer configurations, and 

~ o =  { ~ e ~ :  ~(0)= 1} 

plays the role of state space of the environment process (EP). The condi- 
tion r/(0)= 1 reflects the fact that the random walk is confined to scatterer 
positions. Sd c 7/a denotes the set of 2d unit vectors. For  t /e f2 and e e Sd 

u(e, ~l) = ]u(e, q)l e 

Ju(e, q)l = inf{k > O: q(ke) = 1 } 

i.e., u(e, t/) is the position of the scatterer nearest to the origin in the 
direction of e. For ~/e t? and a e Z d, r~r/denotes the scatterer configuration 
shifted by a, i.e., Tat/(X)= ~/(X+ a). 
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2.2. Def ini t ion of the Random Walk  

Let 0e: N ~ (0, oo) be bounded functions indexed by e e Se such that 
0~ = ~ - e  and put Oe(Oe)= 0. Given r/e 12o, the random walk is defined as 
the continuous-time Markov process {J(,: t >t0}, on the set of scatterer 
positions, with Xo = 0 and with transition probabilities P"(X ,  + h = y IX,  = x )  
= - h O ~ ( I x - y l ) + o ( h )  ( h ~ O )  for x, y e r / - a { 1 }  and e e S ~  such that 

y - x  = u(e, Zxr/), and P"(X,+h = x[ X ,  = x ) =  1 - Z y ~ x  P"(X,+h = y bX, = x). 
The corresponding EP {r/t: t~>0} on 120 is defined by r / t=rx ,  r/. Let 

B(12o) denote the space of bounded Borel-measurable functions on 120. 
Then the generator L of the EP is the linear operator on B(12o) given by 

L f ( r / ) -  lim -1 E" [ f ( r / , ) -  f (qo) ]  
,~o t 

= ~, ~9e(lU(e, t l ) ] ) [ f ( v , ( e , , ) t l ) - f ( t l ) ]  (2.1) 
ecgd  

E" is expectation w.r.t. P", the Markov measure on path space given r/. Let 
{S(t): t >~0} denote the semigroup of the EP. 

2.3. Stat ionary,  Ergodic, and Reversible Measures 

For r/E 12 and x, y ~ r/- 1 { 1 }, define a path from x to y along scatterers 
to be a set {Xl,...,xn} c r /  1{1} such that x ~ = x ,  x n = y ,  and Xm+l--Xm---- 
U(em, rxmr/) for some e m e S d ,  m =  1 ..... n- -1 .  We say that x and y are 
connected in r/, and write x,-~ y, if there exists a path from x to y along 
scatterers. 

Def in i t ion .  A configuration r/ is connected if x ~ y  for all 
x, y e r/ 1{ 1 }. A probability measure/x on 12 is connected if r/is connected 
/x-a.s. 

The following set of conditions will be needed later. 

Condit ions (C) .  

(i) # is stationary and ergodic under translations. 

(ii) # is connected. 

(iii) #(r/(0)= 1 )>0 .  

Theorem 2.1. Let /~ be a probability measure on 12 satisfying (C). 
Then #o( ')  = #(" ] r/(0) = 1) is stationary, ergodic, and reversible for the EP. 
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ProoL The stationarity and reversibility are straightforward. Indeed, 
one easily checks by explicit computation from (2.1) that for all 
f ,  g ~ B(s 

f L f d # o = 0  

i f(Lg) d#o = I (Lf) g d/2 o 

using the stationarity of/2 under translations and the assumption ~e = r  
on the rates. 

The ergodicity is more subtle and depends on the connectedness of/2. 
Suppose that #0 is not ergodic. Then there exists a measurable set E c  f2o, 
with 0 < g0(E) < 1, which is invariant under the semigroup, i.e., 

S(t ) le=lE forall  t~>0 

(cf. ref. 8). The complement EC= (2o\E has the same properties. From the 
ergodicity of/2 under translations it follows that 

Hence #-a.s. for all ;7 there exist x, y~Z  d such that rx;7~E and "cy;7 ~/~ 'e. 
Now pick 0 < t 1 < t z < oo independent of x and y. Because 0, x, and y are 
#o-a.s. connected and because the jump rates are positive, it follows that 

I P"(x'I = x, x ,  2 = y)/2o(d~) > 0 

But X,, = x and X,2 = y imply ;711 = rx;7 ~ E and ;7t2 = ~'y;7 E E c, whereas by 
the invariance of E, ;7,~ e E implies ;7,2 e E. This is a contradiction. | 

2 .4 .  C o n n e c t e d n e s s  

In d =  1 every measure is connected. The following theorem gives a 
sufficient condition for d~> 2. 

T h e o r e m  2.2. Let # be a probability measure on s satisfying: 

(i) # is stationary and ergodic under translations in each of the 
coordinate directions. 

(ii) GCD{k>O:/2(;7(0)=;7(ke)= 1)>0}-=  1 for all eeSd. 

Then # is connected. 
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Proof. For  x e Z a and e e Sd define the line 

Rx, e = {x  + k e : k e Z }  

All scatterers on a line are connected. We say that two sets A, B ~ Z d are 
connected, and write A ~ B ,  if all scatterers in A are connected to all 
scatterers in B. Our first observation is that for all x e Z d, e, e ' e  Sd, and 
k > 0 ,  

q(x + le') = q(x  + ke + le') for some l > O =~ Rx, e, ~ Rx  + ke.e, 

i.e., two parallel coordinate lines in a coordinate plane can be connected 
via a single pair of scatterers. Now define 

Ae= {k>O:p(rl(O)=rl(ke)=l)>O} 

Then by assumption (i) the 1.h.s. of the above implication holds #-a.s. for 
all x e Z a, e, e ' e  Sa, and k e A s. By assumption (ii) we therefore have 

G C D { k > O : R x , ~ , ~ R ~ + k e , ~ , } = l  p-a.s. 

Our second observation is that from the transitivity of the relation ~ and 
the stationarity of # under translations it now follows that 

Rx, e,~Rx+ke, e, p-a.s, forall  k > 0  

Hence t / is  connected. | 

Remark.  The assumptions in Theorem 2.2 are fairly optimal. One 
easily checks that (ii) is also necessary under (i). 

2.5. Invariance Principle 

Under the conditions of Theorem 2.1, we are in a situation to apply 
the invariance principle (IP) for reversible Markov processes (see ref. 1, 
Theorem 2.2; one can assume without restriction that configurations are 
not periodic under translations; then X t is an antisymmetric function of the 
environment process). This yields: 

T h e o r e m  2.3. Assume (C) and E,o(lu(e, ~/)12 ~e(lu(e, q ) l ) )<  oo for 
all e E Sd. Then as e ~ 0 the processes {~X~-2,: t ~> 0} converge weakly in 
p0-measure to a Wiener process (WD(t): t ~> 0}. The diffusion matrix D is 
given by 

Dij= (D~-- Ddi )cSii 
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where 

with 

O~= ~ g~o(lu(e,q)12O~(lu(e,q)t)) 
e ~ +e i 

f? O d = 2 d t  g l ~ o ( ~ i ( ~ )  S ( t )  I~ ) i (~ )  ) 

(2.2) 

~ i ( t / )=  ~ qe(tU(e, q)]) u(e, tl) 
e -  ~e  i 

(ei, i = 1,..., d, are the positive unit vectors in the ith coordinate direction). 

Remark. D~ and D~ are called the "static," resp. "dynamic" part of 
the diffusion constant in the ith coordinate direction. The former is the 
diffusion constant of the "effective medium" process and is explicitly 
calculable. The latter depends in a more intricate way on the randomness 
of the medium and is usually not explicitly calculable. Note that the second 
assumption is sufficient to ensure the quadratic integrability of X t and of ~. 

3. T H E  S T O C H A S T I C  L O R E N T Z  LATTICE GAS 

In this section we define the motion of a test particle in the discrete- 
time stochastic Lorentz lattice gas. First we show that by looking on the 
scatterer hitting time scale the EP becomes a process of the type discussed 
in Section 2. Theorem 2.3 will then give us the IP on the random time scale. 
Next we apply a random-time-change argument to transfer the IP to the 
full time scale. Finally we show how to extend the IP to the situation where 
the origin is not conditioned to be a scatterer and the initial velocity of the 
particle is arbitrary. 

3.1. De f in i t ion  of  the  M o d e l  

The test particle in the discrete-time stochastic Lorentz lattice gas is 
described by a position X n and a velocity vn. Given t/e f2, the state space 
of the test particle is ZaxSa. The EP {rxnq: n>~0} is not Markovian. 
However, by adding the velocity and defining the EP as 

{(~xo~, vn): n >0} 

we obtain a Markov process on s x S~. The transition operator P of this 
EP is defined on B(f2 x Sd) by 

1 
Pf(tl, v)=[1-tl(O)]f(%rl, v)+rl(O)~ ~ f(req, e) (3.1) 

e ~ S d  
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Any measure of the type # | 2, with # on 12 stationary under translations 
and 2 on Sa the uniform measure, is invariant under P. However, such 
measures are in general not reversible. 

3.2. The Scatterer Time Scale 

Suppose that t /(0)= 1. Let {T~: n>~0} denote the successive times at 
which the particle hits a scatterer, i.e., 

To=O 

T~+l=inf{k> Tn:tl(Xk)=l}, n>~O 

The first marginal of the imbedded EP {(rxr.q, vr.): n>~O} is {rxrfl: 
n/> O} and is a Markov process with transition operator P'  on B(Oo) given 
by 

, 1 
Pf(~/)=~-~ ~ f(%(e,,)~/) (3.2) 

e~Sd  

To the discrete-time imbedded EP there corresponds a continuous-time 
version with generator L = P ' - - I .  It is clear that the latter is a process of 
the type introduced in Section 2, namely, with ~e = 1/2d for all e ESa 
[-recall (2.1)]. In particular, Theorem2.1 shows that it is stationary, 
ergodic, and reversible w.r.t. # 0 ( . ) = # ( . [ q ( 0 ) =  1) when ~ satisfies (C). 
It follows easily that the discrete-time imbedded EP shares the same 
properties. 

Therefore we obtain the following analogue of Theorem 2.3 (see ref. 1, 
Theorem 2.1 ). 

T h e o r e m  3.1. Assume (C) and O<E,olu(e, ~/)12< ~ for all esSa. 
Then as n - - * ~  the processes {n-~/2Xrt<: t>~0} converge weakly in 
/~o-measure to a Wiener process { WD(t): t~>0}. The diffusion matrix is 
given by 

Vij= (O~- Of)6 O. 
where 

with 

D~ = 1  ~ E~olU(e, q)l 2 
e = + _ e  i 

D a= 2 ~ Euo(CI)i(tl) P'%~i(tl)) 
n = O  

(3.3) 

~,(~)=~ E u(e,~) 
e = + e  i 
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3.3. Invariance Principle on the Full Time Scale for Po 

The process {Xr~: n ~> O} has stationary and ergodic increments if the 
scatterers are distributed according to #o. Since 

Tn= ~ IXT~-- XT~_I 
k ~ l  

the Birkhoff ergodic theorem implies the following result. 

k e m m a 3 . 2 ,  l imn~oon- lTn=~  -1 a.s., where ~ I=E,o(IXTI])= 
E,0(T1). 

The above property of the time scale T~ will be crucial for the random- 
time-change argument given below. The following is an intermediate result 
on the full time scale, namely we replace Xr[~ J in Theorem 3.1 by XETot ~. 

k e m m a  3.3. Assume (C) and E~0 lu(e,r/)[2+6<oo for some 6 > 0  
and for all e e S , .  Then as n--* oo the processes {n-U2XET,,] " t~>0} con- 
verge weakly in #0-measure to the same Wiener process as in Theorem 3.1. 

Proof. Let 

r  T m d n }  

denote the last hitting time of a scatterer prior to time n. Let r  be 
defined by 

By Lemma 3.2 we have, uniformly on compact intervals of time, 

lira [ T , t ] _  1 a.s. 

and hence 

lim r  t a.s. 
n ~ o o  

Now apply the random-time-change theorem of Billingsley (ref. 2, 
Chapter3, Section3) to obtain from Theorem3.1 that {n-U2Xr 
t ~> 0} converges weakly in #o-measure to { WD(t): t/> 0}. Next let Yn = 
X,  - X ,  _ 1. Since 

[ Tnt] 

X[T,t] = X~Er,,]) + ~, Ym 
m = ~ ( [ T n t ] ) +  1 
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the proof of the lemma will be complete once we show that uniformly on 
compacts 

1 [ r . o  
- -  E Ym = 0 in probability 

n ~ o o  m 

Indeed, we have the estimates 

m [r . t ]  Ym 

=~([Tnt])+ 1 

and 

1 \ 
T1 > a) 

\ N / g l  O <~ k <~ [nOn(t)] 

by the stationarity of the increments of T,. From the Markov inequality 

P~o T~>e <<.eZ+~nl+~/? 

and this completes the proof via E~o(T~ +~) < oo and 0,(t)-- ,  t. | 

The IP under the initial condition that the particle starts at a scatterer 
now becomes: 

Lemma 3.4. Assume (C) and E~o l u(e, r/)12+~< oe for some 6 > 0  
and for all eeSe. Then as n ~ o e  the processes {n-1/2X{n,l: t~>0} 
converge weakly in #o-measure to { W~D(t): t >~ 0}, where c~ -1-- E~o(TI) 
and D is the diffusion matrix of Theorem 3.1. 

Proof. By Lemma 3.3, 

1 [r , t ]  

N / ~  k = l  

By Lemma 3.2, this is the same as 

] [r~t] 
vG ,(t) ~nk=l 

Apply the random-time-change theorem (ref. 2, Chapter 3, Section 3) to get 

1 1 [,~t] 

,fi 
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3.4. Invariance Principle on the Full Time Scale for p 

Under the measure/2 0 the test particle starts on a scatterer. We shall 
now show that the IP carries over to the measure/2. The proof is based on 
the following observation: when the particle hits the first scatterer, it sees 
an environment distributed according to a measure v on ~o that is 
absolutely continuous w.r.t. #0- The path between the origin and the first 
scatterer is negligible in the scaling limit, while for the rest of the path we 
can use Lemma 3.4 starting from the measure v. 

L e m m a  3.5. Assume (C). Assume further that E~o l u(e, r/)[ < oo 
for all e~ S~. Let v e be the distribution of v,(e,,)~/ when r/ is distributed 
according to /2. Then ve (viewed as a measure on s is absolutely 
continuous w.r.t. #o, with 

dve 
d/2o (tt)= lu( -e ,  r/)l/2(rt(O) = 1) 

Proof. Straightforward. | 

We now obtain our final result. 

T h e o r e m  3.6 (lnvariance principle for the stochastic Lorentz lattice 
gas). Assume (C) and E~olU(e,~l)]2+~<~ for some b > 0  and for all 
e ~ Sd. Then as n --* oo the processes {n-  1/2X[,,] : t ~> 0 } converge weakly in 
/2-measure to {WaD(t): t~>0}, where ~ 1 =E~0(Tl) and D is the diffusion 
matrix of Theorem 3.1. 

Proof. Let X,(q) denote the position of the particle at time n in 
the scatterer configuration q, and assume that the particle starts with 
velocity e. From the identity 

X,(~/) = (lu(e, tl)i A n)e + X(i,(e,~ I v n)--lu(e, rl)l(7~u(e, rl) t l)  

it follows that the scaling behavior is determined by 

1 

Now use Lemmas 3.4 and 3.5 and the following observation. If the 
processes {eZ~-~, : t >~ 0} converge weakly to a Wiener process as e tends to 
zero, then the same is true for {eX(~_~,)_~:  t>~0} for any y > 0 .  | 

4. N O N D E G E N E R A C Y  OF THE D IFFUSION M A T R I X  

In this section we give a simple computat ion of the diffusion constant 
in d =  1 and prove the nondegeneracy of the diffusion matrix in d>~ 2. For  
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a related Lorentz model and under stronger restrictions the value in d =  1 
was computed in refs. 3 and 4 via Green's function techniques. 

In d =  1 the set of scatterers in a configuration t 1 e s o can be indexed 
by the integers in the following natural way: t/-1{1 } = {X,(t/): x ~ 7/}, with 
X0(tl) = 0 and X~(t/) < Xy(~) iff x <  y. 

The interscatterer distances are ~(q)=Xx+~(~/)-X~(t t ) .  In this 
section expectation w.r.t. #0 will be abbreviated by <->. 

Theorem 4.1. Assume (C) and (i) <61> < ~ ;  (ii) Y'.x~z I < ~ o ~ x > -  

<6o><~> [ < ~ .  Then ~D= <go>- 

Proof. Observe that the process {Xv '  n~>0} is a simple random 
walk on the set {X~(q): x~7/}. Therefore [recall (3.2)] 

P'=6x(rl)= ~ p=(x,y) c~y(rl) forall n~>0, x~7/, t/El2 o (4.1) 
y ~ Z  

where p,(x, y) denotes the n-step transition probability to go from x to y 
for the simple random walk on 7/. This formula can be used to compute the 
dynamic part of the diffusion constant [recall (3.3)] as follows: 

N 

1 lim ~ <(6o-6_~)P'n(6o-6_l)> 
o d : ' 2  N ~ ~ n = 0  

1 N 
=-- lim ~ ~ [p,(0, y) -- p,(--1,  y ) ]<(6o- -g_ , )6y> 

2 N ~  n=0 y r  

N 

1 y~, lim ~ [p,(0, y)-p=(O, y+ 1)]<(6o-6_1)~y> (4.2) 
2 N ~ o o  n = 0  

The interchange of the sum over y and the limit N ~ o0 is allowed because 
assumption (ii) implies 52y~z [<(6o-6  1)6y>[ < oo. The sum over n can 
be expressed in terms of 
Section 29): 

the potential kernel for simple random walk (ref. 5, 

This gives 

N 

lim 
N ~ o o  

n = O  

[p=(O, o ) -  p=(O, x) ]  = IxL 

1 
Da= 5 ~ (-lyl+ly+ll)<(6o-6_l)6y> 

y~77 

= <61> - <6o> 2 
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The static part is D ' =  <~2>, and ~ - 1 =  <6o). Therefore we end up with 

O s _ O d 

aD - - - < C 5 o >  | 
(6o> 

In d~> 2 the diffusion matrix is not explicitly calculable, but we can 
still prove nondegeneracy. 

T h e o r e m  4 .2 .  Assume (C) and assume (i) and (ii) of Theorem 4.1 
for the one-dimensional marginals of #o. Then 

1 >2 < D~, = D~ - Dr-< 1_ ~t ( Iu(ei' t/)] "~" d ( lu(e. ~)l 2 > 

Proof. The statement in the theorem is equivalent to [recall (3.3)] 

O<~Df<<. 1 [<lu(e~, r/)l 2 ) -- <tu(e,, r/)l )23 

The lower bound is a trivial consequence of reversibility. We prove the 
upper bound as follows. The generator of the EP is of the type 

L E Lj=P'  1 =dj 1= - I = d  j=l ( P ; - I )  

where L s = Pj - I is the generator for jumps in the j t h  coordinate direction. 
Therefore 

~< 2d< q~i(-L~) -~ q~) 

1 
= ~l [ < ju(e~, ~)l 2 > - < lu(ei, rt)l >23 

The inequality comes from the fact that each - L j  is a positive self-adjoint 
operator. This is explained in detail in ref. 1, Section 3. The last equality 
uses (3.3) and the result for D d in the proof of Theorem 4.1. | 

Remark. If assumption (ii) does not hold for the one-dimensional 
marginals of #o, then we still have nondegeneracy under conditions (C) 
and (i), because in that case we can use the trivial lower bound 1/d<~D,. 
This bound is obtained by noting that D/> 1 in d =  1, and that D is an 
increasing function of the dimension (ref. 1, Section 3). 
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5. R E C U R R E N C E  IN d = 2  

Recall that P~ denotes the measure on path space induced by the 
process {XTo: n >~ 0} starting at 0 in the scatterer configuration y/ (q E f2o). 
Let/~ be a probability measure on /2  that is stationary under translations, 
such that #(q(0)= 1)>0.  Let Z(x, y; r/) denote the indicator of the event 
that x, y are neighboring scatterers in the configuration q. Then the tran- 
sition matrix for the random walk on the scatterers of t/is 

p"(x, y ) = ~ z ( x ,  y ; , )  

We shall make a comparison with the random walk on Z a whose transition 
matrix is given by 

pro(X, y)=f p"(O, y -x )  Uo(d~) 

This random walk will be denoted by {X,: n i>0} and will be called the 
effective medium random walk. The measure on path space induced by this 
process starting at 0 will be denoted by perf. 

For A t 7 / d ,  0~A,  [A[ < ~ ,  let 

' ~ A = i n f { n ~ > 0 :  Xvnq~A } 
% =inf{n >~ 1: XTo = O} 

v;fr= inf{n >~ 1: Xn=O} 

and 

H(A) = {h: 2~d--. [-0, 13: h(O)= 1, hlAC~O} 

The following theorem is in the spirit of Durrett. (6) 

T h e o r e m  5.1. Suppose that 

(i) 

(ii) 

(iii) 

Then 

# is stationary under translations. 

~(~(0) = 1)>0.  

is connected. 

f 1-1 - P~(*o < oo)] duo(,) ~< 1 - P~ oo) (5.1) 
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Proof. First note that 

1 -P"(17o < oo)= lim P"(zA ~<~o) 
A "~Z d 

By the Dirichlet principle (see, e.g., ref. 7, Theorem II. 6.1) 

P'7('c A ~ 17o) = i n f  E(A, h, q) 
h~H(A)  

with 

Therefore 

1 
E ( A , h , q ) = ~ p " ( x ,  y)[h(y)-h(x)]  2 

x , y  

f [1 - P"(~o < ~ ) ]  dUo(q) 

= f [ lim inf E(A, h, t/)] d#o(t/) 
A ~ [ Z  d h ~ H ( A )  

(. 

~< lim inf j E(A, h, q) d#o(q ) 
A ~ Z  d h E H ( A )  

~< lim inf 1 A~Za h~I-I~A,2 ~ p~,o(x, y)[h(y)-h(x)]  2 
�9 X, y 

1 neff~ e f t -  
= - r  tro <oo)  

where in the last step we use the Dirichlet principle for the effective 
medium random walk. II 

Remark. Assumption (iii) ensures the irreducibility of the random 
walk on the scatterers of q, which is needed for the Dirichlet principle. 

Theorem 5.2 (Recurrence in d~< 2). Suppose that # is a probability 
measure on f2 satisfying: 

(i) # is stationary under translations. 

(ii) Eu0 fu(e, t / )12<~ for all e~Sa. 
(iii) /~ is connected. 

Then in d ~< 2 

W(Xrn = 0 infinitely often) = 1 #o-a.s. 
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Proof. In d = 1 the statement of the theorem is trivial. So consider 
d =  2. By assumptions (i) and (ii) the effective medium random walk is 
symmetric and has finite variance and therefore is recurrent. Hence the 
r.h.s, of (5.1) is zero. Therefore P~(%< oc )=  1 /to-a.s. | 
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